بسم الله الرَّحمُنِ الرَّحيمِ

Diagnostic Test

	Gold	standard		
New (test	Disease	No Disease	Column Total	
Positive	а	b	a+b	
Negative	С	d	c+d	
Row Total	a+c	b+d	N	

H. Risanto Siswosudarmo Department of Obstetrics and Gynecology Faculty of Medicine, UGM Jogjakarta

Diagnostic Test

1. Objective

- 1. Recognizing DT and screening.
- 2. Identifying diseases appropriate for screening.
- Defining, calculating, and interpreting the sensitivity, specificity, positive predictive value and negative predictive value, false positive and false negative, SnNOUT and SpIN, LR + and LR- of a screening test.
- 4. Explaining the influence of prevalence of disease to predictive value.
- 5. Understanding side effects of a screening test.
- 6. Understanding an ROC curve.

2. Method

- 1. Lecture
- 2. Discussion
- 3. Computer computation

When screening is beneficial

- ✦ The disease is serious (e.g., cervical cancer).
- When treatment before symptoms occur is more effective than treatment that is delayed until symptoms appear.
- When the prevalence of disease in the DPCP is relatively high.

The time interval between possible detection by screening and later detection after symptoms is the "detectable preclinical phase" or **DPCP**.

Characteristics of a Good Screening Test

- ✤ Inexpensive
- Easy to administer (easy to do, not complicated)
- Minimal discomfort (convenient)
- Reliable (consistent, reproducible)
- Valid (distinguishes diseased & non-diseased people)

Characteristic of gold standard test

- The best test available
- Widely accepted (by all)
- Often expensive, or invasive

Basic Table: Two by two table

	Tes baru (tes	Gold standard			
diagnostik)		Sakit	Tidak sakit	Total	
	Positif	а	b	a+b	
	Negatif	С	d	c+d	
	Total	a+c	b+d	Ν	
Sens	sitivity: a/(a+c) PPV: :	a/(a+b) 7	FP:a ; FP:b	
Spe	cificity: d/(b+d) NPV: d	/(c+d)]	$\Gamma N : d : FN : c$	

Accuracy: (a+d)/N

Test validity

- Test validity is the ability of a screening test to accurately identify diseased and non-disease individuals.
- An ideal screening test is exquisitely <u>sensitive</u> (high probability of detecting disease) and extremely <u>specific</u> (high probability that those without the disease will screen negative).
- The validity of a screening test is based on its accuracy in identifying diseased and non-diseased persons.
- This can only be determined if the accuracy of the screening test is compared to some "gold standard" test.
- Gold standard test is a test that establishes the true disease status. The gold standard should be very accurate, but may be expensive and invasive

1. Sensitivity:

- The accurate the screening test in identifying disease in people who truly have the disease.
- The ability of the test to identify correctly those who have the disease.
- + Proportion of people with disease who have a pos. test

2. Specificity

- The accuracy of the screening test in correctly classifying truly non-diseased people.
- The ability of the test to identify correctly those who DO NOT HAVE the disease
- Proportion of people without disease who have a neg. test

- **1. Positive predictive value (PPV):**
- The proportion of people with positive test who actually HAVE the disease.
- If a person test is positive, what is the probability that she/he really has the disesae?
- + PPV= a/(a+b)
- 2. Negative predictive value (NPV)
- The proportion of people with negative test who actually DO NOT HAVE the disease
- If a person test is negative, what is the probability that she/he really DOESN'T HAVE the disease?
- NPV = d/(c+d)

1. SnNOUT

+ When a test with a high SENsitivity is NEGative, it effectively rules OUT the disease

2. SpPIN

When a test with high SPEcificity is POSitive, it effectively rules IN the disease.

Likelihood ratio

1. Likelihood ratio positive (LR+)

- The probability of a positive test in a person with the disease divided by the probability of a positive test in a person without the disease.
- 2. Likelihood ratio negative (LR-)
- The probability of a negative test in a person with the disease, divided by the probability of a negative test in a person without the disease.
- ✦ LR (-) = (1- Sensitivity) / Specificity

Impact of likelihood ratio

LR(+)	LR(-)	Impact on likelihood
10	0.1	Excellent
6	0.2	Very good
2	0.5	Fair
1	1	Useless

Two important down sides to screening:

1. False positive (Exp: Breast ca on a young women).

- The probability is extremely low
- The sensitivity of mammography is low because younger women have denser breast tissue.
- ✦ Will be subjected to extreme anxiety and worry.
- May also undergo invasive diagnostic tests such as needle biopsy and surgical biopsy unnecessarily.
- Time consuming and costy

Two important down sides to screening:

2. False negative.

- They will be reassured that they don't have disease, when they really do.
- Delayed diagnosis
- Delayed treatment
- Increased morbidity and mortality
- Increased cost

Effect of prevalence on PPV

Skrining pada donor darah perempuan yang prevalensi HIV (+) adalah 0,01% (hanya 10 HIV positif dari 100.000 donor perempuan). Tes skrining memiliki sensitivitas 100% dan spesifisitas 95%. Berapa PPV nya? Perhatikan tabel berikut:

Screening	Gold St	Total Column	
test	HIV (+)	HIV (-)	
Tes (+)	10	510	520
Tes (-)	0	99.480	99.480
Total Row	10	99.990	100.000

 $\overline{PPV} = 10/520 = 1,9\%$

Effect of prevalence on PPV, scenario II

Skrining dilakukan pada laki-laki yang datang di klinik penyakit menular seksual yang prevalensi HIV (+) adalah 4 %. Tes skrining memiliki sensitivitas dan spesifisitas yang sama yakni masingmasing 100% dan 95%. Berapa PPV nya?

Screening	Gold Standard		Total Column
test	HIV (+)	HIV (-)	
Tes (+)	4.000	480	4.480
Tes (-)	0	95.520	95.520
Total Row	4.000	96.000	100.000

PPV = 4000/4480 = 89%

Effect of prevalence on PPV, scenario II

Skrining dilakukan pada pengguna obat suntik intravena yang prevalensi HIV (+) nya adalah 20%. Berapa PPV nya?

Screening	Gold Standard		Total Column
test	HIV (+)	HIV (-)	
Tes (+)	20.000	400	20.400
Tes (-)	0	79.600	95.520
Total Row	20.000	80.000	100.000

PPV = 20.000/20.400 = 98.%

Receiver Operating Characteristic (ROC) Curve

- ♦ ROC curve is a plot of sensitivity (Y axis) versus 1specificity (X axis)
- The position of the ROC on the graph reflects the accuracy of the diagnostic test. It covers all possible thresholds (cut-off points).
- The ROC of random guessing lies on the diagonal line.
 It means that the test is worthless
- The ROC of a perfect diagnostic technique is a point at the upper left corner of the graph, where the TP proportion is 1.0 and the FP proportion is 0.

- The Area Under the Curve (AUC), also referred to as index of accuracy (A), and it is an accepted traditional performance metric for an ROC curve.
- The higher the area under the curve the better prediction power the model has.
- AUC = 0.8 indicates good predictive power of the model
 - ♦ .90-1 = excellent
 - ♦ .80-.90 = good
 - ♦ .70-.80 = fair
 - ♦ .60-.70 = poor
 - ♦ .50-.60 = fail

